88. Merge Sorted Array
You are given two integer arrays nums1
and nums2
, sorted in non-decreasing order, and two integers m
and n
, representing the number of elements in nums1
and nums2
respectively.
Merge nums1
and nums2
into a single array sorted in non-decreasing order.
The final sorted array should not be returned by the function, but instead be stored inside the array nums1
. To accommodate this, nums1
has a length of m + n
, where the first m
elements denote the elements that should be merged, and the last n
elements are set to 0
and should be ignored. nums2
has a length of n
.
Example 1:
Input: nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3
Output: [1,2,2,3,5,6]
Explanation: The arrays we are merging are [1,2,3] and [2,5,6].
The result of the merge is [1,2,2,3,5,6] with the underlined elements coming from nums1.
Example 2:
Input: nums1 = [1], m = 1, nums2 = [], n = 0
Output: [1]
Explanation: The arrays we are merging are [1] and [].
The result of the merge is [1].
Example 3:
Input: nums1 = [0], m = 0, nums2 = [1], n = 1
Output: [1]
Explanation: The arrays we are merging are [] and [1].
The result of the merge is [1].
Note that because m = 0, there are no elements in nums1. The 0 is only there to ensure the merge result can fit in nums1.
Constraints:
nums1.length == m + n
nums2.length == n
0 <= m, n <= 200
1 <= m + n <= 200
-10<sup>9</sup> <= nums1[i], nums2[j] <= 10<sup>9</sup>
Solution:
class Solution(object):
def merge(self, nums1, m, nums2, n):
"""
:type nums1: List[int]
:type m: int
:type nums2: List[int]
:type n: int
:rtype: None Do not return anything, modify nums1 in-place instead.
"""
for i in range(n):
nums1[m+i] = nums2[i]
nums1.sort()
Follow-up: Can you come up with an algorithm that runs in O(m + n)
time?
class Solution(object):
def merge(self, nums1, m, nums2, n):
"""
:type nums1: List[int]
:type m: int
:type nums2: List[int]
:type n: int
:rtype: None Do not return anything, modify nums1 in-place instead.
"""
i = m - 1
j = n - 1
k = m + n - 1
# merge in reverse order using two pointer approach
while j >= 0:
if i >= 0 and nums1[i] > nums2[j]:
nums1[k] = nums1[i]
i -= 1
else:
nums1[k] = nums2[j]
j -= 1
k -= 1
# fill nums1 with the left over nums2 elements
while j > 0:
nums1[k] = nums2[j]
j -= 1
k -= 1